Monitoring Framework for Upland Hardwood and Grassland Restoration: Integrating Innovative Spatial Technology

Heather Theel, Molly Reif, US Army Engineer Research and Development Center (ERDC), Environmental Laboratory

and

Robin Tillitt

(US Geological Survey, Columbia Environmental Research Center)

May 11, 2016 DOI National Restoration Workshop

GUHM Partners

(Grassland and Upland Hardwood Monitoring)

Project Partners:

US Department of the Interior US Fish and Wildlife Service Crab Orchard National Wildlife Refuge Kathleen Burchett , Refuge Manager Mike Coffey, CERCLA Program Leanne Moore, CERCLA Program David Jones, Fire Management Program Case Bryan, Biology Program

US Department of the Interior Office of Policy Analysis Kristin Skrabis, Economist

US Department of the Interior US Geological Survey Columbia Environmental Research Center Robin Tillitt, Ecologist Jo Ellen Hinck, USGS NRDAR Coordinator Keith Grabner, Forest Ecologist US Department of Defense US Army Corps of Engineers US Army Engineer Research and Development Center Heather Theel, Research Biologist Warren Lorentz, Chief, Environmental Processes and Engineering Division

Molly Reif, Research Geographer

Nathan Beane, Research Forester

US Department of the Interior Office of Restoration and Damage Assessment Restoration Support Unit David Ross, Restoration Biologist

US Department of Agriculture US Forest Service National Inventory and Monitoring Applications Center John Stanovick, Mathematical Statistician

Overview

Background

- Universal Metrics vs. Goal Based Objectives
- Project Questions
- Approach
- Monitoring Framework for Upland Hardwoods and Grasslands
 - Traditional Field Surveys vs. Innovative Spatial Technology
- 2016/2017 Field Sampling Plan

The need/importance of restoration monitoring is well documented (Hooper et al 2016)

- Restoration Science is trending towards the concept of Universal Metrics (Baggett et al 2014)
 - Lack of monitoring data
 - Unclear restoration goals/objectives
 - Therefore, unable to assess population changes

- Restoration Science is trending towards the concept of Universal Metrics (Baggett et al 2014)
 - Lack of monitoring data
 - Unclear restoration goals/objectives
 - Therefore, unable to assess population changes

Lack of change detection = Unsuccessful Restoration Oyster Habitat Restoration Monitoring and Assessment Handbook

Utility of Universal Metrics

- Systematic Assessment of Basic Restoration Performance
- Consistent
- Comparable
- Simplified, Reduces burden
- May not adequately address goal-specific performance

Oyster Habitat Restoration Monitoring and Assessment Handbook

Universal Metrics

- 1. Reef areal dimensions
- 2. Reef height
- 3. Oyster density
- 4. Oyster size-frequency distribution

heNature

FAU RIDA ATLANTK

Definitions (Baggett et al 2014)

Universal metrics: Metrics and variables that should be sampled for each habitat-specific restoration project

Goal-based Metrics: Metrics that are specific to ecosystem service-based restoration goals and should be sampled for projects citing that particular restoration goal

GUHM Project Questions

- What are common measures and/or metrics in the literature to monitor the basic performance of upland hardwoods and grassland restoration projects?
 - Traditional Field Based
 - Remote Sensing
- What are the advantages/disadvantages (precision, level-of-effort, etc.) between common monitoring metrics?

GUHM Project Approach

Phase 1 (2015/2016):

- Literature Review
 - Traditional Field Based

Remote Sensing

- ★ Reif, M., and H. Theel. In Review. Remote Sensing for Restoration Ecology: Application for Restoring Degraded, Damaged, Transformed, or Destroyed Ecosystems.
- Draft Monitoring Frameworks for Upland Hardwood and Grassland Restoration Projects
- Field Sampling Plan
- Phase 2 (2016/2017):

Monitoring Framework

• Objective:

To develop habitat-specific restoration monitoring frameworks that provide universal metrics for evaluating restoration performance at varying levels of precision

General Approach:

- Compilation of Universal Monitoring Metrics
- Tiered Precision (3 levels)
- Traditional Field Based vs. Remote Sensing
- Universal Environmental Metrics
- Universal Human Use/Recreation Checklist

Upland Hardwood Draft Monitoring Framework

 Using the literature, the team is developing a tiered framework with the following kinds of information:

Upland Hardwood Site							
Tier One (Universal Metrics for all Hardwood Restoration)							
Metric Type	Calculated Metrics 1-Structural Metrics 2- Compositional Metrics 3-Ecosystem Service Metrics	Field Collected Data	Methodology (plot size, distribution, and number of samples will be determined by consultation with statistician)	Level of Effort (estimates for field personnel hours and/or data processing hours)	Sampling Guidelines Post implementation Timeframe (Early, Mid, Late) Frequency (estimated time between sampling events for measurable change)	Precision (determined by confidence required/desired by practitioner and restoration objectives)	Product

- The tiers represent increasing levels of precision to meet the wide range of NRDAR needs. For example:
 - **Tier 1.** Structural and compositional metric for trees is % cover
 - Tier 2. # Trees/Hectare, Basal Area/Hectare (m²/ha), and snag Density (# snags/ha)
 - **Tier 3**. Tier 2 plus survival

Why Integrate Remote Sensing?

- Role of RS has increased with the advent of new sensors, improved technology, decreasing costs, and global increases in protected land area
- Increased need for rapid and remote ways to examine the effectiveness of restoration strategies
- Spatial measurements can be used to quantitatively assess restoration objectives in four main areas: 1) habitat extent and landscape structure, 2) habitat degradation, 3) biodiversity, and 4) threats/pressures

Remote Sensing Examples

Medium Resolution Sensors 5-30 m

Applications

Broad-scale land cover or habitat type/pattern
General biodiversity or species richness
Rapid change detection or loss/gain
Seasonal/multi-year changes
Overall forest extent clearance/regeneration
Overall degradation or disturbance from fire grazing, drought, etc,
Broad biophysical estimates from band ratios (NDVI, etc)
Landscape metrics (landscape and class level), such as fragmentation

High Resolution Sensors (<5 meters) Satellite, Airborne, UAS (multispectral and hyperspectral)

Applications

- •Fine-scale land cover or habitat type/pattern
- Species mapping
- Composition/abundance, distribution
- •Biodiversity/species richness
- Detailed degradation or disturbance (some invasive species, pest attacks, fire, grazing, etc)
- Individual feature delineation (e.g. tree crowns)
- More detailed biophysical estimates (NDVI, NPP, LAI, etc)
- •Landscape metrics (landscape, class, and patch level)

Remote Sensing Examples

Detailed habitat abundance to assess potential project impacts for restoration planning

• High resolution satellite imagery provided through internal agency agreement

	Average Wetland Impacts (All Four Scenarios)					
Wetla	nd Impacts	50/48	52/48			
Ashley River	forested wetlands	3.52 acres	4.36 acres			
Ashley Rive	r marsh wetlands	10.86 acres	13.16 acres			
Cooper River	forested wetlands	89.65 acres	126.37 acres			
Cooper Rive	r marsh wetlands	127.57 acres	179.83 acres			
	Total	231.60 acres	323.72 acres			

Detailed species mapping in a restored blog complex

Knoth et al. (2013)

Remote Sensing Examples

Lidar products: ground surface, canopy surface, and canopy height models, and intensity images

Radar backscattering and intensity to characterize riparian vegetation properties: size, orientation, and structure (Dufour et al., 2013)

Structural Attributes related to Birds/Bats

Structural attribute	Response				
Vegetation					
Canopy heterogeneity	22 (out of 44) species occupancy increased with increasing heterogeneity				
	Two (out of 44) species occupancy decreased				
	Species richness increased				
	Bat activity and occurrence increased				
Canopy vertical distribution	Two species (out of two) increased abundance and/or				
	occupancy with increasing vertical distribution				
	Species diversity increased				
Canopy height	Chick mass increased in blue tits, decreased in great tits, was climate dependent for great tit chick mass (increased in warm springs, decreased in cold springs) with increasing height				
	Native to exotic species ratio increased with increasing height				
	Species richness (forest species richness increased, scrub species richness decreased)				
	21 (out of 49) species abundance and/or occupancy increased with increasing height				
	Nine (out of 49) species abundance decreased				
	Species diversity increased				
	Bat activity and occurrence increased				
Canopy cover	Native to exotic species ratio increased with increasir cover				
	Species diversity increased				
	11 species (out of 23) increased abundance and/or occupancy with increased cover (horizontal extent and foliage density)				
	Six species (out of 23) decreased abundance and/or occupancy with cover				
Understory density	Species diversity increased with increasing density				
	12 (out of 34) species increased abundance and/or occupancy with increasing understory density				
	Seven (out of 34) species decreased abundance and/or occupancy with increasing understory density				
	Foraging bat abundance decreased with increasing density				
Horizontal structure	Two species (out of two) preferred intermediate or mixed levels of horizontal structure				
	Species richness increased with increasing patch diversity				
Contiguous forest	Native to exotic species ratio increased with larger forest patches				
_	One species (out of one) preferred larger forest patches				
Topography					
Elevation	Species richness decreased with increasing elevation				
Slope	Species richness decreased with increasing steepness				

Active Sensors Lidar and Radar

Applications • Detailed vegetation structure, biomass, and height characteristics

- •Combined with imagery for improved species identification
- Assist with biophysical estimates, detailed 3-D, height, LAI, biomass, age, succession, regeneration, and composition

Remote Sensing for Restoration Ecology: Application for Restoring Degraded Ecosystems (authors Reif and Theel, submitted to IEAM April 2016)

Platform	Sensor, Type	Sensor	Spectral Bands (NM)	Spatial Resolution (M)	Swath Width	Revisit (Days)	Operator	Cost	Applications/Metric
Medium Resolution	Optical -		1-7, 9 (435-2294), Pan 8 (503-	15, 30, 100 (Pan, MS,					Broad-scale land cover or habitat
Spaceborne	Multispectral	Landsat-8	676), 10-11 (1060-1251)	TIR)	185 KM	16 days	USGS	Free	type/pattern, general biodiversity/species
		Indian Remote Sensing-P5					Indian Space		richness, Rapid change detection or
Medium Resolution	Optical -	(IRS-P6) also called	3 (520-860), 4 (520-1700),		70, 141 & 740		Research	1700-4500	loss/gain, seasonal/multi-year changes,
Spaceborne	Multispectral	Resourcesat-1 and 2	Pan (500-850)	5, 20, & 60 (Pan, MS)	км	5 days	Organization	EUR/scene	Overall forest
Medium Resolution	Optical -	Systeme Pour l'Observation					Satish Dhawan	Some archives	extent/clearance/regeneration, Overall
Spaceborne	Multispectral	de la Terre (SPOT-7)	4 (455-890), Pan (450-745)	1.5-2.5, 6-10 (Pan, MS)	60 KM	1-5 days	Space Center	free; \$32/KM	degradation or disturbance from fire,
Medium Resolution	Optical -			10 (b2-4, 8a), 20 (b5-				availabe Oct	grazing, drought, etc, broad biophysical
Spaceborne	Multispectral	Sentinel-2A	13 (400-2400)	8b, 11, 12), 60 (b1, 9-	290 KM	10 days	ESA	2015/Free	estimates (NDVI, NPP, LAI etc), landscape
Medium Resolution	Optical -							0.95-1.05	metrics (landscape and class level), such as
Spaceborne	Multispectral	RapidEye	5 (400-850)	6.5	77 KM	1 day	Blackbridge	EUR/KM	fragmentation
Medium Resolution	Optical -			15 (VNIR), 30 (SWIR),					
Spaceborne	Multispectral	TERRA ASTER	14 (520-2430)	90 (TIR)	60 KM	16 days	NASA RSE		
High Resolution	Optical -		8 MS (400-1040), 8 SWIR						Fine-scale land cover, habitat
Spaceborne	Multispectral	Worldview-3	(1195-2365), Pan (450-800)	0.31, 1.24 (Pan, MS)	13.1 KM	1-4 days	DigitalGlobe	\$18-40/KM	type/pattern, some species mapping
High Resolution	Optical -								(homogenous areas),
Spaceborne	Multispectral	Worldview-2	8 (400-1040), Pan (450-800)	0.31, 1.84 (Pan, MS)	16.4 KM	2-8 days	DigitalGlobe	\$18-40/KM	composition/abundance/distribution
High Resolution	Optical -								(homogenous areas), indicators of
Spaceborne	Multispectral	GeoEye-1	4 (450-920), Pan (450-900)	0.41, 1.64 (Pan, MS)	15.2 KM	2-11 days	DigitalGlobe	\$14-28/KM	biodiversity/species richness
High Resolution	Optical -								(homogenous areas), detailed degradation
Spaceborne	Multispectral	OrbView-3	4 (450-900), Pan (450-900)	1, 4 (Pan, MS)	8 KM	2-11 days	DigitalGlobe		or disturbance (some invasive species,
High Resolution	Optical -								pest attacks, fire, grazing, etc), individual
Spaceborne	Multispectral	IKONOS-2	4(450-860), Pan (450-900)	1, 4 (Pan, MS)	11.3 KM	2-11 days	DigitalGlobe	\$10/KM	feature delineation (e.g. tree crowns),
High Resolution	Optical -								more detailed biophysical estimates
Spaceborne	Multispectral	Quickbird-2	4(450-900), Pan (450-900)	0.6, 2.4 (Pan, MS)	16.5 KM	2-12 days	DigitalGlobe	\$14-28/KM	(NDVI, NPP, LAI, etc) such as with WV-2
High Resolution	Optical -				varies with				and-3 (higher spectral resolution), and
Airborne	Multispectral	Special Project Contract	3- or 4-bands	~0.5 or as specified	altitude	Once	Vendor specific		landscape metrics (landscape, class, and
High Resolution	Optical -				varies with	depends on			patch level)
Airborne	Multispectral	Programmatic (NAIP, NCMP)	Varies (3-and 4-bands)	Varies (~0.3 - 1)	altitude	program	Program specific	Free	
High Resolution	Optical -								Detailed vegetation species discrimination
Spaceborne	Hyperspectral	Hyperion	220 (400 - 2500)	30	7.5 KM	30 days	NASA		(spectrally similar), detailed biophysical
High Resolution	Optical -								estimates and stress based on chemical
Spaceborne	Hyperspectral	CHRIS	63 (400-1050)	36	13 KM	?	ESA		composition, nutrient deficiency, etc,
High Resolution	Optical -		Programmable, up to 288	Varies with altitude	varies with				spectral heterogeneity related to species
Airborne	Hyperspectral	CASI-1500	bands (380-1050)	(~0.2-2)	altitude	Once	ITRES		richness/diversity, detailed disturbance
High Resolution	Optical -		, ,	, ,	varies with				and degradation (invasive species, changes
Airborne	Hyperspectral	HyMap	450-2480)	3.5-10	altitude	Once	HvVista		in foliage, biomass etc)
High Resolution	Typerspectru	i i i i i i i i i i i i i i i i i i i	100 2100	0.0 10	varies (20 -	Unite I	ing vista		Detailed vegetation structure biomass
Snacehorne	Active - Radar	RADARSAT-2 (SAR)	C-band	3-100	500 KM)	3 days	MDA (Kanada)		and height characteristics combined with
High Resolution	Here Haudi		o bunu	0 100	varios (10	5 days	(Kuriada)		imageny for improved species
Englishesolution	Activo Dados		Y band	1 16	100 KM	<2 days	EADS Actrium DLD		identification assist with biophysical
Spaceborne	Active - Radar	TerrasAR-X/TanDEIVI	A-Danu	1-10	100 KIVI)	<3 days	EADS Astrium, DLR		estimates detailed 2 D height LAL
High Resolution	A	Man dan ana sife	1004 or 532 (terrestrial or		varies with	0	Mandana (C		biomass and succession and comparities
Airborne	Active - Lidar	vendor specific	bathymetric	spot spacing varies	altitude	Once	vendor specific		biomass, age, succession, and composition

2016/2017 Field Sampling Plan

Objectives:

- Evaluate the utility of the draft universal monitoring framework for grassland and upland hardwood restoration,
- Identify low-cost remote sensing technologies to monitor grassland and upland hardwood restoration performance,
- Compare traditional field-based surveys and remote sensing technology metrics for assessing performance of grassland and upland hardwood restoration,
- Document costs (level-of-effort) associated with executing all tiers in the decision framework including field and data processing labor, travel, and any indirect costs, and
- Develop universal field sampling data collection forms for restoration practitioners to ensure basic data are being collected.

Study Site

Study Site:

- Crab Orchard National Wildlife Refuge, IL
- ▶ 43,890 ac
- 4 primary purposes: Wildlife Conservation, Agriculture, Industry, and Recreation

https://www.fws.gov/uploadedFiles/general%20refuge%20map.pdf

CONWR Restoration Sites

	Forest	Grassland
Total # CONWR Sites	204	18
Restoration Implementation Completed	102	15
# Primary Restoration	17	4
# Compensatory Restoration	85	11
Mean Area (ac)	9.6	29.4
Min. Area (ac)	0.6	2.5
Max. Area (ac)	54.5	112.1
Standard Deviation (ac)	10.5	27.9

Sampling Design

For each habitat type, 4 sites for each 'treatment':

- Primary Restoration (NRDA contaminated sites)
- Compensatory Restoration (ag prior land use)
- ▶ Reference
- Use similar size sites (~ avg site size +/- 1 SD)
- At least 5 plots per site, additional RS Ground Truth info as necessary
- Implement and collect data from each tier (1-3) at each plot to characterize site

Expected Products

- ► GUHM Field Data Report
- Final Monitoring Framework Report following field testing
- Level-of-Effort (costs) associated with each tier for field and RS
- Universal Field Sampling Data Collection Forms

Acknowledgements

DOI Office of Restoration and Damage Assessment (ORDA) Restoration Support Unit (RSU) GUHM Team

Not Pictured: K. Skrabis, M. Reif, N. Beane, M. Engelmann, D. Wood, J. Stanovick

r. better w