INTEGRATED RISK AND RECOVERY MONITORING OF ECOSYSTEMS ON CONTAMINATED SITES

Timothy B. Hoelzle, Great Ecology

Stephen J. Glomb, U.S. Department of the Interior

Michael J. Hooper, U.S. Geological Survey

David D. Harper, U.S. Geological Survey

Lisa M. McIntosh, Woodard & Curran

David R. Mulligan, University of Queensland

May 11, 2016

WHY DO WE MONITOR?

Baseline Monitoring

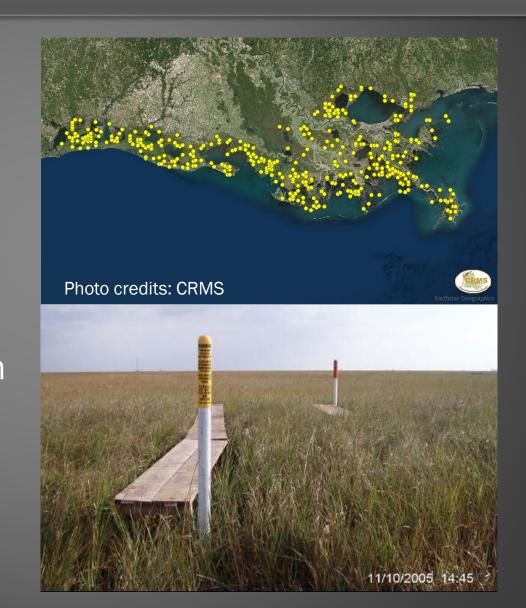
Pre-restoration or reference conditions

Implementation or Compliance Monitoring

Performance standards

Effectiveness Monitoring

Performance criteria/adaptive management


Validation Monitoring

Causal relationship/advancing science/education

TEMPORAL AND SPATIAL SCALES

- Links to the goals of restoration and remediation
- Dependent on the type of monitoring
- Can be considered in the context of a larger system (e.g., CRMS)

RELATIONSHIP OF SERVICES & METRICS

Natural Resource Services

Flood control ----

Water quality

Biodiversity

Ecosystem Functions

Wave attenuation

Fish productivity

Wildlife existence

Measurable Metrics

S. alterniflora density

Water temperature/DO

Bird call surveys

CONSIDER MONITORING UPFRONT

- Goal setting is the right time to establish metrics> services
 - Multiple uses of Habitat Equivalence Analysis?
- Buy-in from stakeholders in the process
 - Correct spatial/temporal scale for each application
- Funding considerations

MONITORING ON A BUDGET

- Photo point monitoring
- Satellite imagery
- Citizen science
- Peer-reviewed models
- Comparison to regional data
- Chronosequence studies

THANK YOU!

