Invasion Impacts and Innovation in the North American Great Lakes

David M. Lodge
Director, Atkinson Center for a Sustainable Future, Professor, Dept. of Ecology & Evolutionary Biology
Cornell University

Innovation Summit
Vision + Science + Technology = Solutions
Washington, DC, 7 December 2016

We can do this . . .
Invasive species

Problem:
Harm > Benefit

We can do this . . .
Small beginnings… great impact

We can do this . . .
Nonindigenous species in aquatic ecosystems

Cumulative number of species discovered

San Francisco Bay
Great Lakes
Baltic Sea

Annual cost of GL ship-borne invasions: $100-800M

(Cohen & Carlton, Ricciardi, Baltic Biologists)

We can do this . . .
Dreissenid mussels

We can do this . . .

photo: M. McCormick, NOAA
photo: Kim Martin, USFWS
photo: TownePost Network

1986
arrive from Eurasia
USGS data
We can do this . . .

Dreissenid mussels
Asian carps: imminent threat to Great Lakes . . .

We can do this . . .

Atkinson Center for a Sustainable Future
Aggregate costs of invasive species

- **Annual damages ($B 2015)**: US $146; Canada $31; Sweden $1; EU $19; China $14; SE Asia $34
- **Challenges**: exponential increase, apparently irreversible
- **Typical policy approach**: external costs not internalized; suffer, react, adapt;
- **Solutions**: innovative policy, science, technology
Risk-based management is common, effective, and cost effective

- Pharmaceutical safety
- Food safety
- Infectious disease

We can do this . . .
Lessons from invasive pathogen: SARS
Invasive species solutions

Problem:
Harm > Benefit

Solution:
Improve policy, use recent science and technology to improve:

- Prevention via species profiling
- Surveillance programs
- Eradication of new invasions
- Slowed invasion spread
- Control of populations

Lodge et al. 2016.
Annual Rev. Environment & Resources:

We can do this . . .
Prevention: Species profiling

Statistical modeling

Distinguish harmful from benign

Royal Plec
Panaque nigrolineatus

Oscar
Astronotus ocellatus

Silver Arowana
Osteoglossum bicirrhosum

Red Bellied Piranha
Pyrhocentrus nattereri

Zebra Tilapia
Tilapia buttikoferi

Arctic Grayling
Thymallus arcticus

Siamese Fighting Fish
Betta splendens

Red Shiner
Cyprinella lutrensis

Westslope Cutthroat Trout
Oncorhynchus clarkii

Florida Gar
Lepisosteus platyrhincus

Atkinson Center
for a Sustainable Future
Surveillance: eDNA

- create a baseline for species occurrence
- monitoring imperiled species
- surveillance for invasions

- greater geographic coverage
- less time
- extract increasing information from eDNA

We can do this . . .
Eradication (not just for islands)

- Rat Island, AK
- Feral Pig, Santa Cruz Island, CA
- Caulerpa, Port-Cros Marine Park, France
- Black Striped Mussel, Darwin, Australia
- Giant African Land Snail, Miami, FL
- Pampas grass, New Zealand
- White-spotted tussock moth, New Zealand
- Witchweed, Carolinas, USA
- Feral Cat, Ascension Island
- Karroo Thorn, Western Australia
- Anopheles gambiae, Brazil
- Sandspur, Laysan

Photo: cdc.gov
Photo: C O'Neal
Photo: D Nickrent
Photo: M Newton
Photo: NT, AUS

We can do this . . .
Slow the spread

Inspection and boat washing stations

Ballast water treatment system

Electric barriers to fish invasion

We can do this . . .
Control

We can do this . . .
Invasive species solutions

Problem:
Harm > Benefit

Solutions:
Improve policy, use recent science and technology to improve:

- Prevention via species profiling
- Surveillance programs
- Eradication of new invasions
- Slowed invasion spread
- Control of populations

Making solutions sustainable by monetizing net benefits:
The net economic benefits delivered by solutions = business opportunity

We can do this . . .