

BROADBAND ENGINEERING FUNDAMENTALS

KENNETH BAKER, CHIEF ENGINEER
JESSICA QUINLEY, ATTORNEY ADVISOR
WIRELESS TELECOMMUNICATIONS BUREAU, FCC
SEPTEMBER 23, 2019

Note: The views expressed in this presentation are those of the author and may not necessarily represent the views of the Federal Communications Commission

OVERVIEW

- + Radio Frequency (RF) basics and terminology
 - + Spectrum
- + Basic Broadband system architecture
- + Spectrum Consideration
- + Regulatory Considerations
- + Citizens Broadband Radio Service
- + Questions

WHAT'S WITH GGGGG?

+Generations of wireless evolution:

- + 1st Generation analog voice.
- + 2nd G digital voice and text. (still in use)
- + 3rd G data, web content (CDMA, GSM, UMTS).
- + 4th G high speed bi-directional data (LTE).
- → 5G factors higher order modulation, advanced antenna systems, increased cell density, use of higher frequencies for more bandwidth. Integrated machine to machine communication. Goal: faster, real time communications

Source: https://www.blog.aquadsoft.com/evolution-of-generations-of-internet-1g-to-5g/

WHAT IS 5G?

"New Radio" (NR): developing NR standards in 3GPP.

1-10 Gbps connections to end points in the field (i.e. not theoretical maximum)

1 millisecond end-to-end round trip delay (latency)

1000x bandwidth per unit area

10-100x number of connected devices

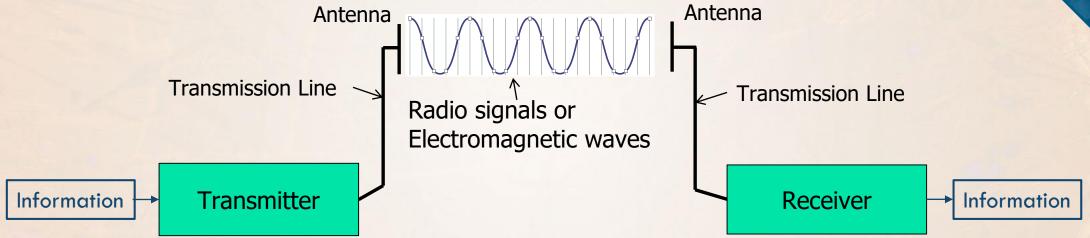
(Perception of) 99.999% availability

(Perception of) 100% coverage

90% reduction in network energy usage

Up to 10 year battery life for low power, machine-type devices

The Goals


User perception of limitless bandwidth

IoT, M2M: Enable connection of billions of devices

New use cases for telemedicine & other high data, low latency apps

The transmitter generates a wireless signal based on the information and feeds it to an antenna by a transmission line

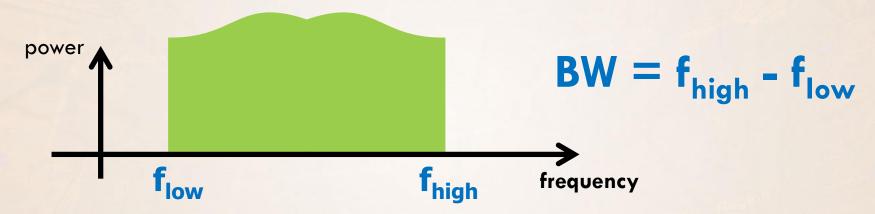
The receiver detects the signal and recovers the information.

```
Frequency = number of cycles per second:

Hertz = 1 cycle per second

Kilohertz = Thousand cycles per second

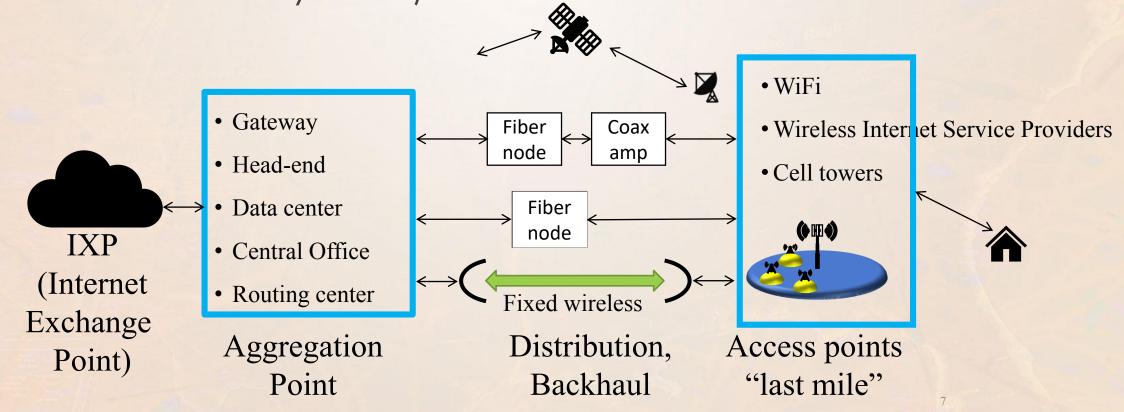
Megahertz = Million cycles per second


Gigahertz = Billion cycles per second

Wavelength=(Speed of Light)/Frequency

Amplitude= Signal Strength or Power
```


BANDWIDTH (BW)


- + Bandwidth is the amount of RF spectrum occupied by an RF signal.
- + Wider bandwidth channels can carry more information.
- Spectrum is a renewable resource that requires management to prevent interference and to enable renewal
- + FCC manages non-Federal spectrum use
 - + NTIA manages Federal spectrum use.
- + Spectrum in the US is either exclusive Federal, exclusive non-Federal, or shared Federal/non-Federal.

BROADBAND ARCHITECTURE BASICS

- + Common options and architecture across various platforms below
- + Best option depends on the requirements and budget

+ i.e., fiber has lots of capacity, but expensive to deploy in rural areas where fixed microwave may be best).

SPECTRUM CONSIDERATIONS

- + Lower frequencies travel farther, but higher frequencies have more bandwidth.
- + Lower frequencies tend to penetrate buildings better than higher frequencies
- + Are you looking for mobile broadband or service to a fixed location?
- + Spectrum availability and cost. Varies between urban and rural deployments.
- + Equipment availability and cost, established bands have more equipment options.
- + Scope of deployment and whether you need exclusivity.

SPECTRUM ACCESS

- +Licensed service, License-by-rule, Unlicensed
 - +Geographic area licensing
 - + Exclusive assignment of a block of spectrum over a defined geographic area.
 - + Generally assigned by auction, but secondary market process is very flexible.
 - +Coordinated site based licensing (fixed backhaul (aka microwave or links), some satellite and narrowband land mobile)
 - + Can be shared or exclusive, but coordination used to prevent interference.
 - +License-by-Rule shared, but with some status: Citizens Broadband Radio Service and Part 95 (CB, FRS, Medradio)
 - +Unlicensed UNII, WiFi
 - + Free access, flexible rules, low power, but no protection or rights

DEVELOPMENTS TO WATCH FOR

- + 3.5 GHz is rolling out
 - + We present information on 3.5 GHz opportunities here!
- + 2.5 GHz BRS/EBS Report and Order includes a Tribal priority filing window for unassigned 2.5 GHz spectrum
- + Check out FCC Session on 2.5 GHz Spectrum Opportunities
 - + Spectrum Opportunities Federal Communications Commission 2.5 GHz Rural Tribal Priority Window
 - + Catherine Schroeder, Attorney-Advisor, FCC Wireless Bureau, Broadband Division
- Mid-Band is under going changes
 - + Docket 18-122 exploring 5G options at 3.7-4.2 GHz.
 - + Docket 18-295 exploring new unlicensed options at 6 GHz.
- + Auction 103: new flexible use licenses in the Upper 37 GHz, 39 GHz, and 47 GHz bands

IMPORTANCE OF 3.5 GHZ BAND

- +Desirable combination of coverage and capacity
- +Low-cost entry points to mid-band spectrum
- +Attractive propagation and channel width for rural areas
- +Key opportunity for deployment of advanced wireless services to Tribal areas

POSSIBLE USE CASES FOR 3.5 GHZ BAND

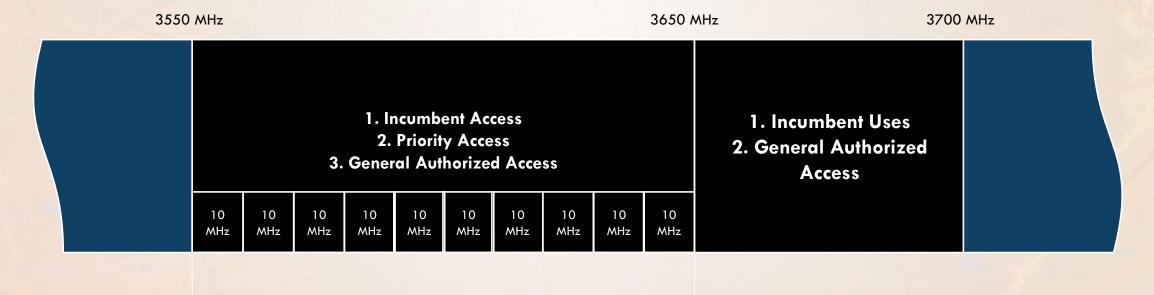
- +Flexible operating rules allow for a wide variety of potential use cases, including:
 - + Wireless broadband access
 - + 5G services
 - + Internet of Things
 - + Intelligent manufacturing
 - + Power generation and sensor technologies
 - + Wireless backhaul

ACCESS TO 3.5 GHZ BAND

- +Hybrid sharing regime managed by a Spectrum Access System
- +Priority Access Licenses
- +General Authorized Access

DIFFERENCES BETWEEN PALS AND GAA

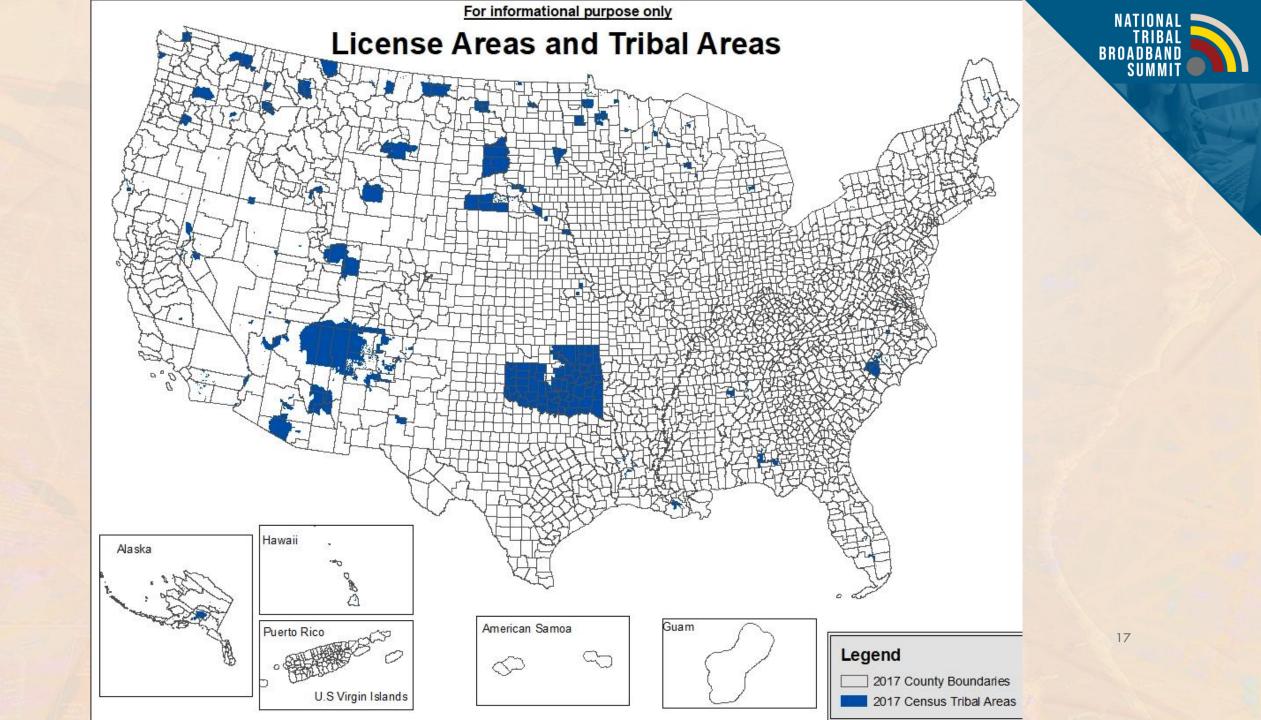
PRIORITY ACCESS LICENSES (PALS)


- + 10 megahertz unpaired channels within the 3550-3650 MHz band
- Licensed by auction for a ten-year renewable term on a county-by-county basis
- → No more than seven licenses will be issued in any county
- + Substantial service requirement at the end of the license term
- + Tribal lands bidding credit

GENERAL AUTHORIZED ACCESS

- + Operations in the 3550-3700 MHz band
- + Licensed by rule
- + At least 80 megahertz in any given county available to GAA users
- → Can operate on any "unused" Priority Access License channels
- Use spectrum at risk of interference from others in the band

3.5 GHZ BAND PLAN



- Each license is a 10 MHz channel in the 3550-3650 MHz band
- No more than seven licenses will be issued in any county

TIMING

- +Prior to Operations
 - + Priority Access Licenses and General Authorized Access Users must register fixed stations or networks with the Spectrum Access System
 - → The Spectrum Access System must authorize Priority Access Licenses and General Authorized Access Users to operated registered stations
- +Initial Commercial Deployment of Spectrum Access Systems

3.5 GHZ BAND RESOURCES

- +For more information about the 3.5 GHz band, please visit https://www.fcc.gov/35-ghz-band-overview
- To review the history of the 3.5 GHz band, search EDOCs or ECFS for Docket Numbers 12-354, 17-258, 15-319, and 19-244

THANK YOU FOR YOUR TIME

- +Questions?
- +Reach out if you need us.
 - + www.fcc.gov
 - + 1(888) CALL FCC (225-5322)
 - + kenneth.baker@fcc.gov
 - + jessica.quinley@fcc.gov