

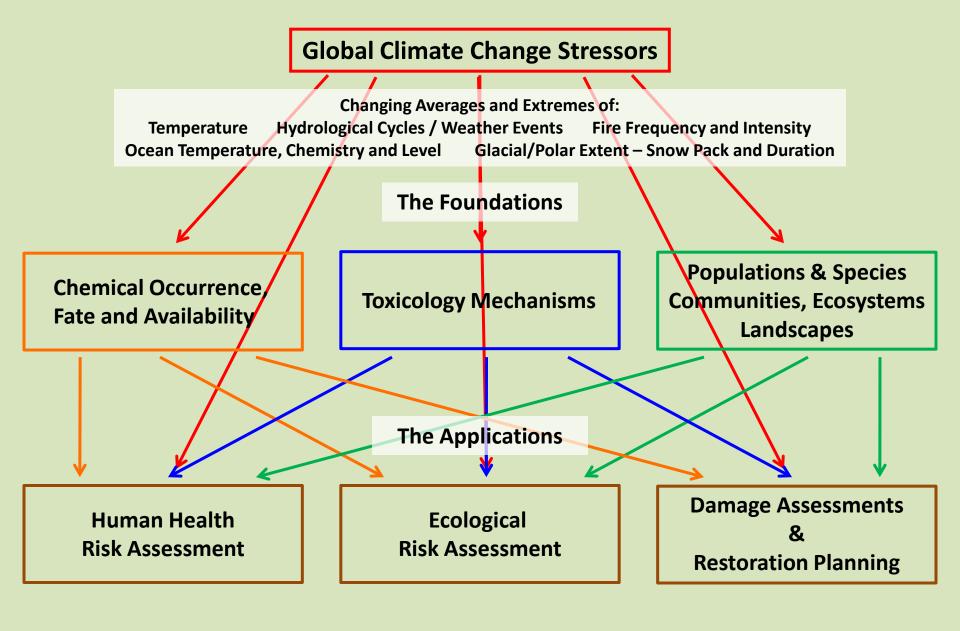
- Climate Change and Restoration - Building Consensus at the Foundations of the Science

Mike Hooper

USGS Columbia Environmental Research Center Columbia, Missouri

Impetus for the Workshop

Global Climate Change effects are observable now:


Increased rate of polar and glacial melt Increases in sea temperatures, decreases in pH Increases in extreme weather events Shifting ranges and phenology for plants & wildlife

We sought to answer the question:

How will global climate change influence

- 1) the environmental impacts of chemicals and
- 2) the way we assess and manage chemical contamination in the environment?

Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry

A SETAC International Pellston Workshop

Workgroups will review and develop research needs for:

Chemical Occurrence, Fate and Availability
Toxicological Mechanisms
Ecological Effects at Scales from Population to Landscape
Human Health Risk Assessment
Ecological Risk Assessment
Damage Assessment and Restoration Ecology

Papers from each workgroup

Climate Change and Injury/Damage Assessments

GCC will: Influence exposure and effects inputs into NRDAs

Act as a co-occurring stressor with chemical/oil impacts

Challenge: Incorporate both influences on injury and service loss into Natural Resource Damage Assessments

Injury is quantified against baseline conditions, considering the preinjury conditions of the resource, pre-existing anthropogenic modification

GCC will complicate development of Baseline Conditions

Challenge: Develop temporal and spatial baselines accounting for the progression of GCC effects both historical and in the future, in the absence of contaminant injury.

Climate Change and Ecological Restoration

Challenges

Shifting species ranges and assemblages (including migratory pathways and timing)

Invasive species occurrence and prevalence

Changing temperatures and precipitation patterns and the resulting changes in surface hydrodynamics

Balancing sea level rises and saltwater intrusion with increasing erosion and sediment deposition in shoreline restorations

Implications

Restoring ecosystem structure, function, and services may preclude the ability to completely restore pre-injury species assemblages

Forecasting the whereabouts of replacements to be acquired or upgraded may become a challenge.

Climate Change and Ecological Restoration

Carefully designed NRDA-associated restorations can provide both Adaptation and Mitigation opportunities

Adaptation to Climate Change Effects through Ecological Restoration

Develop diverse restored ecosystems with functional redundancy to provide resilience necessary to buffer both short- and long-term effects of climate change

Provide habitat, refugia, and corridors for species impacted by GCC-induced stressors

Seek opportunities to provide habitat for threatened or endangered species previously extirpated from restored areas

Strengthen shorelines and offshore barriers with oyster and seagrass beds, mangroves, and other transitional ecosystems to protect on-shore habitats from increasingly intense storm events

Climate Change and Ecological Restoration

Adapt to species loss, ice sheet disintegration, increased intensity of floods, storms, droughts and fires? Such talk is disingenuous and futile. For the sake of justice and equity, for our children, grandchildren and nature we have no choice but to focus on mitigation.

James Hansen

Mitigation Measures in Ecological Restorations

Revegetation, aforestation, & reforestation to maximize carbon sequestration – both immediate and long term

Soil amendment and management practices to increase carbon sequestration in the soil environment

Restoration banking with climate change mitigation value

Steering Committee

An international Steering Committee comprised of academia, NGOs, government and industry

Will Clements	Colorado State University
Susan Finger	USGS
Alyce Fritz	NOAA
Michael Fry	American Bird Conservancy
Todd Gouin	Unilever, UK
Roger Helm	USFWS
Chris Hickey	NIWA, New Zealand
Michael Hooper	USGS
Wayne Landis	Western Washington University
Jannicke Moe	Norwegian Institute for Water Research
Wayne Munns	USEPA
Ralph Stahl	DuPont