

Commonwealth of the Northern Mariana Islands

Territorial Climate and Infrastructure Workshop

Multi-Source and Renewable Power Supply System Development

Commonwealth Utilities Corporation

March 2022

Presentation Snapshot

- Introductions
- II. Multi-Source and Renewable Supply Power System Development Goal
- III. CUC's Existing Power Generation Systems
- IV. CUC's Challenges
- V. CUC's Vision for the Multi-Source and Renewable Supply Power System Development
- VI. Questions and Comments

Ι.

Introductions

Commonwealth Utilities Corporation

The CNMI's only publicly owned utility operator, providing the islands of Saipan, Tinian, and Rota with critical Power, Water and Wastewater services.

✤Gary P. Camacho, Executive Director

 Yvonne C. Ogumoro, Acting W&WW Division Manager, Environmental & Mechanical Engineer

Richard V. Cano, Power Generation Manager

Power Infrastructure Priority Project

Project, needs and strategies to support the successful implementation of projects supported by the Bipartisan Infrastructure Law (BIL)

CUC Multi-Source and Renewable Power Supply System Development

*****PRIORITY PROJECT DESCRIPTION(S):

*#1:To construct a new power plant determined by the on-going integrated resource study to maximize renewable energy.

*#2: To modernize current electric generation facilities through increased energy efficiencies and renewable systems integration.

Multi-Source Power Supply Goal

Achieve the Long Standard Goals that benefits the CNMI: Cost Containment and Emission Control:

- Maximize the availability of multiple options to provide a reliable, sustainable and clean energy source for a healthy way of life for the community.
 - Secure the future and support economic growth
 Improve the resiliency, safety, reliability, & availability of energy
 - ******Reduce the threat to our environment (ocean & land)*
 - Support electric vehicles (EV) policy
 - Support CNMI Energy Policies
 - Comply with Federal Regulatory Requirements (Clean Air Act/ Clean Water Act) to reduce Carbon Emissions
 - Transition away from the dependency on fossil fuel
 - Improve consumer confidence

*Reduce kWh rate (improve overall cost-effectiveness of power generation)

CUC's Power Generation and Renewable Energy Portfolio

Diesel Solar (Net Metering)

NOTE: Public Law 15-38: 50% by Dec. 2030

CUC's Existing Power Plants

CUC's Existing Power Plants

	Power Plant-1 Lower Base, Saipan													
	1			DESIGN MW	AVAIL. MW	R. H.*	Comments				Ye: Se	ars in rvice		
				7.3 6		230,418	Operational			2	26.3			
				7.3 6		252,465	Operational			2	28.8			
				7.3	5	241,245	D	erated -	ed - Emergency use only		only 2	7.5		
				8.7	0	0		Nee	ds replac	s replacement		9.3		
			6	13	10	183,892		Operational			2	1.0		
			7	13	10	196,501	Operational		2	2.4				
			Totals	56.6	37	157,778	A	Avg. R. H	l. of Engi	nes at P	P 1 2	4.2		
Note: R.H. is Running Hours												_	\sim	
Power Plant - 2, Lower Base, Saip in (48 years old engines)								Powe older)	r Plant -	4, Puer	to Rico,	Saipar	(50 years a	ant
DE #	DESIGN MW	AVAIL. MW	R. H.		Commer	nts		DE #	DESIGN MW	AVAIL. MW	R. H.		Comme	nts
								2	2.3	2	59,416	б Оре	erational	
2	2.5	2	5,857	Operat	ional			3	2.3	2	85,413	B Ope	erational	
4	2.5	2	2376	Operat	ional			4	2.5	2.3	62,880) Ope	erational	
	2.5	-	2070	operat	iona.			5	2.5	2.3	74,015	б Оре	erational	
5	2.5	2	1321	Operat	ional			10	2.5	2.3	28,478	B Ope	erational	
Totals	7.5	6	Note: Data of Running Hours not accurate as meters were reset					Totals	12.1	10.9	Note: D accurate	ata of as me	Running H ters were i	ours not reset

Challenges with the Current Power Generation

***** Obsolete Parts – Engine Parts & Switchgears Limited Supplier – MAN Energy Solution Proprietary Information – Mitsubishi Heavy Industry Increased Materials Lead Time – 6-12 months Special Order of Custom Made Parts Increasing O&M cost ~\$2.4M for major overhaul and cost of operations *Aged equipment and facility structure Reduced efficiency and reliability due to old technology De-rated generating units *Labor intensive operation and maintenance Unable to meet current environmental standards Threat of System Loss

Priority #1: New Power Plant

80MW of Dual Fuel Electric Generation (5 units– 10MW, 3 units-7MW, 9MW Solar PV)

- * All engines with SCADA technology
- * Electric Grid Outage Maintenance Software
- **New Plant Structure, Approx. 2 Hectare Footprint**
- * Reinforced steel for wall paneling
- Overhead crane (50-ton with secondar 5-ton crane)
- * Reverse Osmosis System
- * Oil Recovery System
- Maintenance Shop
- * New Fuel Tank System
- 9MW Solar PV with Battery Storage

✤ COST: \$150 MILLION

Summary of Reasons for a New Power Plant

- 1. Aged Equipment/Limited Life Span
- 2. Limited Technology
- 3. High Operating Cost
- 4. Environmental Threat
- 5. Existing plant is limiting renewable penetration

Facility had suffered damages from past major typhoons and resulting to:

Corrosion
Inefficiencies
Equipment Damages

Priority #2:

To modernize current electric generation facilities through increased energy efficiencies and renewable systems integration

- Acquisition of One (2) Dual Fuel Hybrid 10MW Generator: Turnkey (Engineering, Delivery & Installation, and Commissioning)
- Foundation Assessment & Upgrade
- Interconnection Systems Upgrade for Solar Integration
- ✤ 2 5MW Solar PV Farm with 2MW Battery Storage
- * 1MW = 5 acres (101K square meters)
- Human Resource Infrastructure (Personnel for New Renewable Division, Training)

* COST: \$40 MILLION

Summary of Reasons for Plant Modernizing + Solar Farm

Reduce Current Challenges: Obsolete Parts, Limited Supplier – MAN Energy Solution; Increased Materials Lead Time – 6-12 months for Special Order of Custom Made Parts; Increasing O&M cost ~\$2.4M for major overhaul and cost of operations; Aged equipment and facility structure; Reduced efficiency and reliability due to old technology; Unable to meet current environmental standards

Increase Reliability on the Grid (Sustainable Power Generation)

Increased Electric Efficiency

Reduce Carbon Footprint

Reduce Rate for Kilowatt per Hour by \$0.04 to \$0.05 per kilowatt per hour.

Ongoing Projects-Progressive Developments

Solar Feasibility Study and Design for Saipan and Rota (OIA, 2020)

Solar PV Engineer Professional (OIA, 2020)

SCADA for Power Plant 1 (OIA, 2020)

*****2.5MW Solar Farm Design for Saipan (OIA, 2021)

Power Distribution Automation for Saipan (OIA, 2021)

Integrated Resource Plan Update, CNMI (CDBG, 2021)

CUC Integrated Resource Plan Update

Multi-Source Renewable Power Supply Systems Development

9 INDUSTRY, INNOVATION AND INFRASTRUCTURE

Questions and Comments

Si Yu'us Ma'ase, Olomwaay, Mahalo and Thank you!

